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ABSTRACT 

One of the basic difficulties (aside from thp mathematics!) in 

the theory of non-local fields has to do with physical interpretation. 

In the case of "free fields" in so far as our formalism is concerned 

there does not appear to be much difference between local and non- 

local fields.   It was for this reason that we embarked on a program 

involving the study of non-local fields with interactions chosen in 

such manner as to vanish in the limit of the local field approximation, 

if indeed the fields in nature are non-local to begin with.   Our con- 

siderations are restricted to the situation which maintains for the 

case of the so-called non-local electromagnetic field as a convenient 

example since the properties of the ordinary electromagnetic field are 

well known.   Although the form of the interaction that we have chosen 

is somewhat artificial, it satisfies the requirement of vanishing in the 

local field case and brings us in contact with the type of problem that 

has to be dealt with.   In particular the interaction is chosen to be a 

local external inhomogeneous electromagnetic field and is introduced 

in a manner similar to that currently in vogue in the Quantum Theory 

Fields. 

It is shown that our problem can be reduced to the solution of 

the problem occurring in the usual theory for a " massless" vector 

meson in an equivalent external electromagnetic field.   This external 
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electromagnetic; field occurs as the difference of the local external 

! •f * r\1 A    ^\ ?»^ 1 »!«•» *^%^    r\ 4-    *—~>i^ « <•*      ^ J WS^Mtr*    <-.^*s^w^4.^-T   U--   IV..     f*  -.!_  

(V      which occur in the expansion of a non-local field.   Thus a non- 

local "neutral" particle characterized additionally by the numbers 

O     would take on the characteristic of a "charged" particle under 

influence of the quivalent external electromagnetic field.   On the basis 

of this finding it would be possible to take over all of the machinery of 

current theory and at the same time inherit their shortcomings. 

Although no numerical calculations are m-de, this finding increases 

our insight regarding physical significance, in so far as our work is 

concerned, of the C~ numbers CL    appearing in non-local field 

theory.   This result is to be compared with the significance attributed 

to the <L    for the case of a constant external E/ H   field. * ' 

Second quantization of the free non-local field is effected in a 

manner different from that effected for a scalar field reported else- 

where^/ with substantially the same results.   In particular, here, 

upon anticipating second quantization, the fields are subject to a 

unitary transformation which in a certain sense localizes the field. 

Again as in the case for a scalar field^2' the local and non-lccal 

electromagnetic fields admit of a net number of quanta operator with 

the aid of which the energy and momentum and other operators for the 

field in particular the mass operator may be expressed.   The energy 

\ '..'•'••: • 
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is positive definite while the momentum and net number of quanta 

operator are not. 

Some consideration is given to the problem of the generalized 

Sehroedinger equation for unitary transformations in order to yield 

independently of the commutation relationships postulated for the 

fields the result that if the field equations are satisfied the unitary 

transformation considered as a functional of a space like surface is 

independent of the latter.   This is effected for fields obtained via the 

usual Lagrangian methods as well as via operational methods for 

local fields.   In the latter an essential difference occurs due to the 

appearance of the net number of quanta operator in the functional 

equation for the elements of the unitary transformation.   This may 

iu*ve a bearing on the concept of statistical equilibrium in that the 

probability for transitions from one state to another (under suitable 

restrictions) is found to decrease as the net number of quanta involved 

increases. 

The results of our investigation amongst other things indicate 

that the operational methods yield novel results even for local fields 

as exemplified, for example, by the non-vanishing of the net number 

of quanta operator even in the limit of operator local fields.   This 

operator vanishes in the limit of C~ number fields.   It can be shown 

that if we admit complex fields (Spinor fields satisfying first order 

equations) the four-current quantum density obtained via conventional 
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methods is identical aside from numerical factors from the one obtained 

(rin nur on^rfitirmai methods.   Such a current would vanish if the fields 

are real according to conventional techniques.   Our operational 

method indicates that a four-current vector exists whether the fields 

are complex or not.   This raises the question among many as to the 

possibility of describing all fields by means of real (hermitian) 

entities since heretofore the complex fields were introduced to assure 

existence of a four-current vector.   It is believed that this question 

as well as others warrants investigation even within the domain of 

local operator fields. 
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I.   INTRODUCTION 

1. Problem of Non-local Photon in Interaction with General jjocai 
£;H Field. 

In an earlier report^ ' consideration was given to the problem 

of the interaction between a constant £y H field and a non-local photon 

from a semi-classical point of view,   Vve have left open the question 

of quantization of such fields.   In the case of a constant £yH field 

the operator field equations were not too difficult to solve.   For a 

general E, HI  field the equations are such as to necessitate our 

restricting the investigation to a study of the possibility of reducing 

the problem to that which confronts us in the ordinary theory.   We 

will find that this can be done in a mathematical sense.   However, 

the reduction of the problem will not imply that no physical differences 

occur between the theories.   The structure of the reduced equations 

are such as to help us make some physical interpretations (including 

quantization) using our classical theory as a guide. 

2. Some Identities. 

Let us consider the commutator expression 

C      H   L   If*    -V       UJ (l.l) 

»vv' " 

:^ -.;^r^Lv-#N 

:   V 

_~* .yj>* 

-     ---• :•••        • •>_.•>> . ,' >,.     .    .-  - 



where   V^.    is a local function: 
r" 

. — 

\ 

\ 

r2h *ft. -, 

C^,V]-o (1=2) 

and ->£>    is one of the displacement operators.     U on the other hand 
(3) is a non-local function.   Moreover, we recall* ' the following funda- 

mental commutation relationships between the displacement operators 

tfte.   an(1 ^e sPace-tirne operators X " 

r 
Hfrj * U -i* \T 

/* 
(1.3) 

for a system of units corresponding to the choice  n *• C  s   I . 

Now  V,^ and   U   may be expanded in terms of the basic functions 

tS>      f*" and thp nnn-inr-ai haste functions  > •   '• O and the non-locai basic functions 

respectively as 

IK.*^ ^r.\rAk)e*y 
/*     Cy-   /* /< 

>"-j ik^iS*" 

(1.4) 

(1.5) 

(1.4) is merely the ordinary Fourier expansion of a local function 

while (i. 3) corresponds to the non-local Fourier expansion of a non- 

locai function. (4) It is to be noted that /        and /   .        are to be 

;-l*/  •   >. ^ 
'V>«*v,/V .-as -„    •l-HW.W-r- 

J "*' •-•:.- •    ft, 

- . • -   r - * "... 
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- "• •V. * .,?' .-, 
.-. " • 

i- V " '. • ' 

.   . _-. 

^*m 



ir 

I 
•  I 

i . 

interpreted as 4-fold and 8-fold integrals over the K- space and 

hf<L space respectively unless otherwise specified.   Upon intro- 

ducing (1.4) and (1.5) into (1.1) we find that (1.1) may be written as 

% 

u (^/<";Je':r^e^^ (1.6) 

upon noting that 

a:v.*^e*r** =e-'^^e;^*-e'^^.     a.7, 

and redefining our summation variables. 

The coefficients of our basic functions c. *    "' c.   A 

occurring in (1. 6) bear a striking resemblance to the operations in- 

volving matrices and vectors in quantum mechanics.   For if we define 

(in a representation with fl   diagonal) 

• \   f 

•••?- - p: 

',-"1;&••-' 

<K' 1 * (fe)|fc"> -/(/?'>) i(fe'-t"), (1.8) 

<k'!^)ife">»i^a'-fc»j(e-T'>'>' -/ )j     d.9) 

then (1.6) may be written as 

-J:-. 
}* 

,- •    -'?y-*:. " / 

m»> •*'- m<: n••»» '""•oiwm'ji^^e&Wfc 
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CA«i7 tt'l ^-^(fjik^u.^k'^t^e^"*. u.io) 

Now if we undertake to expand 

where   V^r is another local function with expansion 

(1.11) 

Ik., x/ 
(1.12) 

we will discover after using some elementary laws of matrix multi- 

plication that 

t e' r** e'"~ *Lf 
(1.13) 

It? 

These results are readily generalized to commutator expressions of 

higher order. 

It may be more convenient to work in a representation with 

the operators r. diagonal which we define by the equations 

*~rr 

' -••'-• ••   '' 
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»>?.£.•<•' :v M^*.-^-*-^*W,*I-I .•  r 

,-,— -J^»T^.- -v »«IIIII,I,>III'V,I»WWH 

\.L.   i^./ 

CS^S" J = o 

c*., D-O; 

By the analogy which exists between (1.14) and the commutator equa- 

tions involving the space-time operators X- and the displacement 

operators ypj^   we can with the aid of our transformation functions 

<$'l k' > = curre'"'*5''" '.<fc' I y>*       a-m 

rewrite (1.10) in terms of the   > ;5 .   Let us obtain the structure of 

(fe' I *yu. I k") given by (1.9).   Since from (1.4)     V   is local we 

may write 

£(iO«Xea,e^(i£)i(« V ^;A 
(1.16) 

Consequently, from (1. 9) we have 

£ (i^J Hfe '-fc'J. (1.17) 

'       -'• • 
. .   •       • -•:.. 

.1 
'• •• :•• 

'-       ••.., 

Jfci*^ 
-SnA • V 
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(1.17) is readily recognized to be the matrix element of 

YLo-~^/- YU ' S /   .   Hence we may write 

<k'i^(i-)ik*>.<b'i^($-^)-ylft;ik''>,   U.18) 

which in view of (1.14) enables us to write in a representation with 

diagonal 

i 

a.   ,-..,„: 

1 

-. f '.     ,„ £* 
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II.    EQUATIONS FOR NON-LOCAL ELECTROMAGNETIC FIELD IN 
INTERACTION 'WITH A LOCAL ELECTROMAGNETIC FIELD 

O *r»«~U   TT i.1  

From previous work' ' the field equations for a non-local 

Electromagnetic Field in interaction with a local external electro- 

magnetic fieJd are 

; c £, p*" ]«o > 
(2.1) 

where 

^[^/.j-af^/vl (2.2) 

E. with  F^   defined in terms of the displacement operator sP     and 

the external local vector potential A(*) 

A" 
as 

£• • fA-' 3 hP> (2.3) 

where   Q   is the coupling constant and where we have taken r\ - C - | 

In general we cannot add in addition to (2.1) the equations 

r 

. * 

'   ••'"'• • 

••' • 

1 

•  • 

-••• •.,    . 
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' •,,'.. •'-• V - 
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unless \-IJA-J >-i/ -  " const. ? which latter occurs only if the external 

t., H  field is constant.   This case has already been considered. * ' 

Now 

i '"[£X,M£,eAH£,£,Aj (2.4) 

I      I 
i     f 

1 

t-TP,^/,.].[p,,i^/^]-a^i^,A(/] 

upon using (2.2). But 

[£,£,Arl-Cfc,£y/U« 

*•$,$*, A>t%,As,$MAr,&,$l      M 

after using the Jacobi identity 

CA;B,Cl + rB/-,A] + fC/A,BJ^O. (2.6) 

gf 

Consequently, upon noting that the first two terms on the right side of 

(2. 5) make no contribution we have upon adding the equations of (2.4) 

*. )> 

i1"'- 
•>•••'.  .' 

:  -.•-'  '. vO' W" ::'." %» 
,,.-.__ 

- £* 

> -* ta C;> 
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[A.,£^MAff,P,,PJti7L %,?„.]-    (2.7) 

!>V^,W^,P^-CA^PJ 

However, 

•• 

2 
V*- ; A ir (2.8) 

where   ' ^ ,/•    is the local external field strength.   In view of (2.8), 

(2.7) may be written as 

f 

I rv. £? 1+5 EV, r« ]+4 M,, F# ].  «2.9, 

Equation (2.9) is the analogue for our case of the second set of Maxwell's 

equations which are identities as a consequence of the definition of the 

field strengths in terms of the vector potentials.   Inspection of (2.1) 

and (2.9) shows that these equations are invariant if we add to the 

vector potentials   AJU, the expressions   lr#o. .   T    J where    j 

-_ , __ 

' • <'y\ •''  ••' •-..•.•>* 

~&m 
•>, 

% 

•'-'v 

..•J. V 
• .. iy -if- t    *"** ?&   A 

•'-::-:•  '-^±^'j^i 
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is a local function.   For if we denote by 'A^' the h^ 0i A 
augmenting each /L by LPy,   7  J  we obtain 

AC i/- obtained by 

£,- ^+r^f,., n-[A'^f^rh  *. 10) 

which reduces to 

F'    =F A ytc i (2.11) 

upon making the observation that * V is a local function so is 

^'A> ;   '   -•  and  '••JPU- >   I -* and tnen noting that the external vector 

potentials  r\ tr and r\ are local functions. 

If now we alter the external H^ by adding Lp^ T J 

observe that 
-7^ we 

where /Vy denotes the altered field strengths.   Consequently, if we 

alter both the external and internal vector potentials by adding 

U#«., VJ , we find that 

F'"     *   F"      ±    F far Ai*\ (2.13) 

' -    ...' i    ..'•• • -' 
..... .•. '^~-  ... • 

•7' -. - 

.   •      -','•' 

,   -•   - 

-,: 

^ ^3  ^ 
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rr/n 
where  \A, ,r corresponds to the altered C" \..xr.   Thus equations (2.1) ^j- ^.—r .„ .    .^ 

end (2. 9) *re alte^0^    ^<=> must conclude then that only if the internal 

vector potentials   /L are subject to a gauge transformation will the 

Field equations be invariant unless the fields are local and/or 

i-^Pn   .  '   -1 is constant. 

4.    Equations for Coefficients in the Expansion of the Non-local Vector 
Potentials fK^ . 

If we introduce (2. 2) in (2.1) we obtain 

-^i^/ri+ri^p", w) = o. (2. 14) 

Consequently, if we identify  V^ of section 2 with Q n   ' which V^ of section 2 with Q n 

appears in our definition of [      in (2.3) we obtain upon introducing 

the expansions 

k 

into (2.14) 

(2.15) 

(2.16) 

•f 
•••' • '.  i - 

irr—'    a 

«M -:    , 
•-•-•   ... 

;i#*  C<*    v^jSJj:,^ r _   •. 

r^>," %V£>?3 .,7 ft?    .   •  . 
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Zl<^-^(H^M^i^l^^^> 
&?•* 

„"7, L»l /will -»H«->tl .U.^rtlVll/iA**""/^^)* 

gA^)) i k") *^ ,fe')j e^"* e;^ /.A" 

Now we recall' • that if 

(2.17) 

*• 3TTV 

,. "  S • 
- i :• 

- - i     .-   •   * 
'-•   J 

i ••.• 

where the vA u    are basic functions, then 

a(|,fe)«Tr liU|k) 

so that if U - O, then CL ( CLJ k ) * 0 . Prom this we must 

conclude since £ *" "V*6J» *** are proportional to the non- 

local Fourier basic functions that (2.17) is equivalent to 

(2.18) 

....'i '•••-•••• 
• -.*'"' ^, *>' "Vi 

2 -•• -••'• "     .   .-...• 
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If we refer to the work of section 2 again we discover that (2.18) may 

be given an operator version if we interpret 

J-3L- (2.18) 

so that (2.18) may be written as 

Another form of (2.18) may be obtained by going to a representation 

with the ) * diagonal.   This may be done with the aid of our trans- 

formation functions (1.15) as in quantum mechanics.   For if we multi- 

ply both sides of (2.18) by the transformation function \ J    I   K / 

and integrate using 

|lk'>cTk'<k'l * ', 

and then expressing lfc"> as 

\k">-( i §"><$" ik^yry; 

* o-v v^*4*. ,.*»**— 
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we obtain the operator version in this representation (  S    diagonal) 

to be 

where 

r/*(l,S)*fcleiskar(t,k)<l'tk (2. 22) 

•. ••:-• 

tye have now succeeded in reducing the solution of the original 

operator field equations (2.14) to the solution of operator equations 

which customarily appear in quantum mechanics, namely (2. 20) or 

(2. 21).   The fl/4 U, k )   appearing in (2.20) and the   fi *, ? ) 

appearing in (2. 21) may be looked upon as vector wave functions, 

the former being in a representation with    J   diagonal and the latter 

in a representation with   K  diagonal, with   5   ^d   "   satisfying the 

commutation relationships (1.14) and further where the "" «5 and 

T 'S   are related through (2. 22). 

"ft'.r' 

! 

\ »•".'' 

I 

5.    Equivalent Electromagnetic Field. 

Further inspection of (2.21) indicates the striking similarity 

.    • -   .    > • 

'; 

•  •> • : 

••v    .: -\ •   . •-',v.'v./' < :••.•    . 
- '-^      - - -. <;,v    ..•-••    .   . 

: •.• '-•    ' ..: •. -' v, V   -•» .      . 
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which exists between it and the classic field equations for a massless 

wpntnr mown ir.  intorootirm mi*h an  ovtornal  olor'trnrnflrmotip -f4o1n 

/vj (5-^-)-/^  wj which latter would vanish in the 

of local fields 

case 

f /* =  o 

It would be appropriate to identify 

C'*/£'(*-*;-/£'(*; (2S. 23) 

I 
"I 

• .'•' •••:•.'•• £ 

- L ' I 

as the equivalent external electromagnetic field that affects a non- 

local photon from a purely structural point of view.   Thus a non-local 

"neutral" particle characterized by the numbers £•_   in a local electro- 

magnetic field ftju, {%*)   would "see" or seem to be affected in the 

classical sense by the equivalent electromagnetic field given by the 

right hand side of (2= 23).   Thus if we impute to the C - numbers   S 

appearing in (2. 23) a rough equivalence to the numbers used to describe 

the position of a point particle in classical mechanics, we may come 

to some qualitative conclusions regarding the behavior of a non-local 

"neutral" particle in a local electromagnetic field by invoking the 

machinery of classical mechanics.   As an example we may consider 

the effect of a local coulomb field on a non-local massive particle. 

—     -    PVTs   .-•.'• 

- 
-J^y-^-.        ••   •    .     -       .    .   ." _.-''.  :•'<•    - 

'••?, 
••.-—»-. 

>••.--.--, 
;•- 
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From (2. 23) we would conclude that the " trajectory" would be equiva- 

lent to thai which wuulu exiot for a charged particle in the ^"sws 

of two equal but oppositely charged particles displftced by a distance 

I <Kr i .   From this point of view we have discovered another way to 

give significance to the C~ numbers   OL. appearing in our non-local 

plane waves.   For in the treatment of the problem of a non-local 

photon in interaction with a constant c . H   field     it was found that 

the C- numbers   4- appeared in such a fashion in the expressions 

for the temporal component of   r^a as to make it possible to ascribe 

to the non-local photon a magnetic and electric dipole moment. 

It would seem possible to carry the analogy further and utilize 

all of the formalisms at our disposal to carry on the program of 

second quantization of the   JA.   fields appearing in (2. 21).   Such a 

procedure would imply the imputation of the same physical signifi- 

cance to the   ijt   as was accorded to the   /L   from the local point 

of view.   However, it must be recalled that we are restricting our 

investigation to the case of a possible interaction of a local c., (| 

field with a non-local field and the conclusions and identifications 

that have been suggested here may not be valid for the problem of 

the interaction of two or more non-local fields. 

The connection existing between r\      and  T      may be 

readily obtained from the following considerations.   From (2. 22) we 

have 

y*v^>v 

. • 

.-'.•"'• t 

• -.-.    - - ! fit  . .•   "-;-: 

«**3V >•.,<> far    v,   .»•   j .-. 
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24) 

/r.(wrjjafipklt'^e^^rk; (2. 25) 

from (2.15) upon using the factor  (f "W  /        so that now the co- 

efficients of 0-   (Oifkj in (2. 25) involve our normalized non-local 

plane waves or basic functions.   After introduc ing (2.24) in (2.25) 

we obtain 

PT-. UntTjjfeYV H^Je'^'^'Ylidy^. &. w 

However, 

.i«fc.(*"-jOj*i.j* (i^rjrn^)c^-> '#u*^n^)-   »»> 
• i To show this it is merely necessary to take the matrix elements of 

the left hand side of (2. 27) in a representation with   Ys diagonal to 

discover that it is equal to   7 (4, £ /   0 \Z>  — & J .   Conse- 

quently, (2. 26) becomes 

/r./e1^* K(f,^)d4f. (2.28) 
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22. 

As a summary we may write the following equivalent expressions for 

a non-local function f\' 

fir - (* irT'l (a"(p k tef+e ^"dy \ 

-Jel**+ ^A(f,^J"f/ (2. 29) 

where 

(2. 29) is quite general. 

6.    Differential Equation for Matrix Elements. 

(3) In view of some previous work     we may express the non- 

local function n     by means of the equation 

(2.30) 

so that upon comparing with (2.28) we conclude that 

f*itt*)-<t.-f iri?>. (2.31) 

&£.-.•'•:." 
•   «, -:     - • 
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(2,31) states that V^"* ( ^ ( £) is obtained from the matrix ele- 

ments \jU Ip      \ Xs"} by replacing Xs' by   /^ — <jL and 3£ 

by   ^/ .   (2.30) can also be written as 

fir*[<x.\A'*I fc + |>e'lTod* |,        (2.32, 

upon noticing that 

»/*• 
(2.33) 

(2.30) and (2.31) suggest that we could have obtained (2. 21) or its 

equivalent by making the substitution (2.30) or (2.32) directly into 

(2.1) and using the statement that if 

<^IUI^+«->e:tr«*d*<J-=0, (2.34, 

then 

(x>\ UU + |>c O, (2. 34a) 

This statement may be verified in the following fashion.   If we take 

the matrix elements of (2.34) in a representation with  %  diagonal 

we obtain upon noting that 

"OM^w^wyi' ***• * •*«*••• 

-, ,*-,~'~,*. 

^m^-j-fcSMBnrt*—-^n-M' >»-*«** v 
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'7- <*'i/<*iuiK+t>e.i*"H *+*>&*> *-<J^I>" 

<t'IU l^">. 

Consequently, if (2.34) is satisfied we must have \ J^ I U I j£ / ^0. 

Hence if we replace £   by X  and #   by &+ ^- we must con- 

clude that (2.34a) is valid. 

If we introduce (2.32) directly into (2.1) we obtain after using 

(2.34) and (2. 34a) and upon defining 

(2.35) 

(2.36) 

where 

(2.37) 

?•   p'r<^-^|A'r|)6>-^:P"'(^'^U>--0.     (2.38) 
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(2.38) is entirely equivalent to (2. 21) and the structure of the equations 

(2,38) would lead us to make the same remarks (section 5) regarding 

(2.38) as were made regarding the structure of (2. 21). 
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ui. IKE FREE :;cr: LOCAL ELECTROMAGNETIC FIELD 

7.    Variation Principle for Field Equations. 

The field equations for the electromagnetic field may be 
(5) obtained by considering the trace of the operatorv 

L « - * R^ FA p**> 

where in this section 

•>^ " ^^/M-ityr/A/J 

(3.1) 

(3.2) 

If we proceed in the manner of a previous report we can show 

that if the field equations 

i{fr,?^\--Q, 

are satisfied, then the vector operator 

r^l/zi\f^]; 

(3.3) 

(3.4) 

satisfies the conservation equations 

lfr, Hri = o \O.OJ 

•   ,'••   :." .    .%• 
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Furthermore ti ^.a> is sausiicu «w  

energy momentum tensor 

-F^F/-F/F^), (3.6) 

satisfies the conservation equations 

Cf^, Tr" 1. o. (3.7) 

8.    Solution of Free Field Equations and Second Quantization in 
Canonical Terms. 

The solution of (3.3) which is hermitian may be expressed in 

terms of our basic functions as 

A^./ikrlAri|,kV^eikV+A(^io^*er^]j'kJ^ ».* 

where 

%k*W(*AA,k»,tm^ (3.9) 

and 

.      fee-   :£* ,:*c-. ^ ^^-r    A.-4 
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k^U.k^O,   ^ 

to be consistent with the supplementary condition 

28. 

(3.10) 

Cf^/V-J-o (3.11) 

If we anticipate second quantization according to the commuta- 

tion relationships 

[A% k' *), A*(^, kn±)] - (% n')•' I It' I £ (Y) HH"}* 

i,(k'-i»')r\   , (3.12) 

«\S*r; 

•    • (...   -    :: 

• •'* ; , •       I 

* — r - s where  r,S--l, i,3;     P|ri -* 0;   r ^ S 3 

and C 14') is for the moment an arbitrary function of the   C - 

numbers  4/    , and with all the other f\ S commuting we will dis- 

cover that the terms involving the displacement operators A)  in (3.8) 

may be transformed away by means of a suitable unitary transforma- 

tion.   Let us consider the operator (hermitian) 

(3.13) 

,• 

£:>    - 
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From (3.12) we can conclude that 
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(3.14) 

(3.14) implies that with 
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Consequently, if cf is chosen to hare the value  <*( given by 

* * -^TTMkr1 £"C^); 

(3.15) 

(3.16) 

(3.17) 

then if we denote by  «.?,   and   y . the expressions (3.15) and 

(3.13) with the o<  occurring therein replaced by <X   given by (3.17), 

(3.16) becomes 
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0 /O.I \   \<*>^  ' ^, 

(3.18) 

However, we must note that as a consequence of our choice for S. 

(3.19) 

which may be verified upon recognizing that fa., and £•    commute 

with the rest of the symbols.       <&( is given by (3.17).   (3.19) may 

be written as 

S.fSr1 ~^ + Q^ J 
(3.20) 

where 

If we now invoke the equations (3.18), (3.19) and (3.20) we 

discover that 

(3.21) 
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(3. 22) 

From (3.10) and (3.11) we obtain 

and correspondingly in view of (3.18) and (3. 20) 

(3. 24) 

Now if we denote by f.  the expression K 

K -- K T, (3. 25) 

where   (p     is given by (3. 21) we can show in a manner similar to that 

which led to (3.18) that 

s:A%^KST, e-^rAHVD} ) 
{ (3.26) 

stM*(4.+n(s:r-e'^ A%+t\) 
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where 

si 2 eu;1<r (3. 27) 

By virtue of (3.26) and (3. 27), (3.22) and (3. 24) may be written as 

W .jr|kr,[Ab(^We*<r6l^ + 

g-"> <^T» 5T*l^k+) ^fei^i i3 j^, (3.28) 

(3.29) 

(3.28) and (3. 29) enable   us to state that the transformed vector 

potentials have been localized in the sense of 

IX s, A^s;"] -o. (3.30) 

& 1 

(3.28) and (3.29) may be written as 
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J '        v 

e^Mfykttik^k^e^rkf^, (3.3i, 

and 

s1AT--yifcr'kJ[A
,(|»eV'Mk.-»i>i;- 

V^ru^ 
V_l >    *-» 

p (3.32) 

where   d V «0 — ' ^ • /   is the one dimensional Dirac function of 

the indicated arguments.   In order to preserve hermiticity we 

must impose the condition that 

A^-feKAM^fe), 

(3.33) 

J 

*%»^. 

9.    Calculation of Energy-Momentum Vector and Number of Quanta 
Operator. 

In this section the n'     and n^ „- which appear will be 

assumed to be the transformed expressions   ^, n      O ,      and 

S   \fju\r $ i     where   ^.  is defined after (3.17).   Furthermore 
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we shall denote by 4s(k) the expression 

/m)-/A'^,od*^ (3. 34) 

so that remembering our convention at the beginning of this section 

(3.31) and (3.32) may be written as 

; 
(3.. 35) 

A%-/ikrife5[/f(k)e:^^(fe0-ii'i)+ei,i-<?''A5(k)S(iio+iki)> 

e^^n (3.36) 

If we now introduce (3.35) and (3.36) into (3.2) we obtain: 

v- 'Act 

where 

;.- "••';*,- •• - '. 

> £  fk" •'" > ••-. i 
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e*1** JH, (3.37) 
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1 
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F (k)=l[krAsU)-kX^)]. 

/o QQ^ 

(3.39) 

But according to the usual identification  r0. * - L, 

^ »  - H3 ,      Fx, * - H (  and   F3J = - Mr , (3.38) and 

(3.39) may be written in vector notation as 

HUK-ifeXAOO, 1 

H (0 - - !• i X A 00- 

EUO« 

(3.40j 

V»^ ^"V 

EUO--' 

i[k„Mk)-kA»] 

•JL AU)-kA.UO] j 
(3.41) 

That the iV ir    given by equation (3.37) is hermitian may 

surmised by recalling our hermiticity condition (3.33) which 
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F      /   U\       F      ( k)   .   From (3.11) we must have 
implies  V^r \T *) « ' r/^ V *J 

A.U)-.Ck.)-'k- A(fe). 

(3.42) 

H we introduce three mutually orthogonal unit vectors 

^(10   £  W.elk) which satisfy: 

elioxevuO-eU), 

e.uoxeito«e.(fe), 

\ 

(3.43) 

./»-« X 

euoxe.uo^cw, 

then 

A(k).(e(k)^(k))e(fe)+(e,(b)-A(k))e,a) 

+(€U)-A(k))e,(K); <*•«> 

1< '• 

•'•."_ r 
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and from (3.42) 

A.dO-lk.)'1 lkieCk)-AU), 

with similar expressions for 

quently, 

E(k)-e(b)=o, 

A(k) and 

(3.45) 

A0  Ck)   .   Conse- 

(3.46) 

E(k>. ellO«-ik.(S,U0-A>)), 

from (3.41), (3.44), (3.45) and the properties of   &f  §o§»' 

(3.46) Implies that we can write 

£W-lfcXsi(h).A^§.^^k)^l,,)^(k)- (s-47) 

Also, 

.-.. •-•••..••   •• 

r.->. 

• '    Kifc 
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H(K).eU)=o5 . *\ 

Hlk)«e(b)»L|klAlt). eAM\   > <?.«> 

H(fe>-e cw--UkiA(fe)-e U). 

from (3.40), (3.44) and the properties of the unit vectors.   Hence 

H(y.lM(§i(k).AW)e(k)'JfelCe(k).A(K))e>) 

.--IhlUJ-'e(HXElk) (3.49) 

The expressions for   L  V 10      and   H  v R )    are quite similar 

to those given by (3.47) and (3.49). 

Using (3.38), (3.39) and (3. 49) we may write 

(3.50) 

X 

(3. 51) 

S3E«»*,?'-.    . ..-••••••...-.:. -"••-.•'.-L ,:••/• ;•   ;-.'v'~;.".r>;;'   v 
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From (3.6) we have 

. i(2F"ei+F-5 Fr5- F- F; - R: F-- F - c -FJ F«;y 

t II    1 . Oo I     r~ t-     i—        it     ill 

rM(-F-*ft-er-rF;-F.'F^ 

'EL 

-M-F-»F*s-^r'-FsT,!-FstF") 

*KE, Ft5, F^> t5 F", + F^, £s), 

7 

(3. 52) 

(3.53) 

i •*•?—' 

From (3.4) 
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x-fcfA-E -E. A], (3. 54) 
»v <**• 

Ns. -N,. -lX MrjF
5"]* -lk LA,FM]-^fAtlF*J 

= V*[A   F ]-^f/L.FJ 't» ;      SO £ >   ' St J ; or 

N-vUAj- EAJt^MXH-HXA]. (3.55) 

In developing (3.52), (3. 53), (3. 54) and (3.55) we used the convention 

that Greek indices run from 0 to 3 an(* Latin indices from 1 to 3.   The 

indices were raised or lowered using the flat space metric tensor n 

or H LC\T   
anc* tne customary relations between the r '5 and the 

t ,   H  S    were used together with some elementary vector 

analysis. 

Since the £    commute with all the rest of the operators, we 
(2) need not appeal to the device developed in some earlier work     for 

integrating non-local functions.  We may regard the JL    as; L- num- 

bers.   If we introduce (3.50) and (3.51) into (3. 52) and form /r°d % 

we obtain after making use of certain vector identities 

I 
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.^(k+k')[ikr-(kA:rjx 

E /k)eV". 61^" C(k')Mk.-l fe I )i UC+1 k I)+ 

gWe,+<>*° |»L J'+k' a^feJ*^ (3. 56) 

after recalling that 

e^^cTjt-Sir'ka+k'),       (3.57) 

where a J I K 1~ K / is the three dimensional Dirac function of 

the indicated arguments. (3.56) may be simplified after using the 

properties of the Dirac functions appearing therein to 
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G"-?7f3/'/kr1J(|n-k';rr(k)I(m(l;-IH) 
[^ v-v yvV 

+e VE(fe)Ltwe l>*?1 (k.+l kl)] * 

(3. 58) 

=-i ir»/ikrfEtw- E^e^^f- uow^Jx 

dJk 

since    E(k)-E(-lO  i'£((!)--E(-k). 
v**- *A»*» v*V' \A/V 

If wo introduce (3.47) into (3.59) we obtain 

(3.59) 

d»fe. (3. 60) 

G In the same fashion we can calculate the momentum vector   V?   by 

evaluating from (3.53) 

mmmm 
. •••*• •. 
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(3. 61) 

(3. 59) and (3.61) may be combined into the following expression for 

the H -  vector v3      : 

G»* 

-   Eg* 
1 

...../- 

t 

•   - 

I 

-^Wr!kr3fE(«|a)Sife„-iki)- 

(3.62) 

^J 

Elk)     and E.  (k)   are given by (3.59). 

Let us now proceed to calculate the number of Quanta Operator 

H  which is defined to be 

N*JN'<1*J6, (3.62') 
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where IN     is given by (3. 54).   Now 

N =-Vi[A^-E-A] 
v»*\ v*s 

so that from (3.44), (3.47), (3.50) and (3.35), 

NrVi/|krik!-'{[wk)e''Vn(tiM>el^A(i)Hi0+iu)]- 

If we insert (3.63) into (3.62) we obtain 

^ikrf/ift).|(tt(^M)-e^ft)-Ewei^] 

+[£(k).M)Mk.-i kike*'" I (k). M)e±:^] * 

J*k. (3.64) 

But from (3.47) and (3.44) 

I 1* 
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Atfe).Etk).4k(&^)'A(!l))(§/A(k))-tk.(ex(k>A(i)(slW'?(l)) 

, E(k)-AW 

(3. 65) 

Similarly, 

^).£a;^U).A(K)-ik;'E(fc).£iN). 

Consequently, (3. 64) becomes 

(3. 66) 

(3.67) 

for the number of Quanta operator. 

The structure of (3.67) and (3.62) suggests that we may 

liken the operator 

f(t)«-iir5lkl-'l[(v)a)KMki)-e^t(W.Ea)^l;J    *•« 

to a density operator in such manner as to indicate that Pft)d*k 

i-r - T~7 " 

.-•   '-•• 
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gives the net number of Quanta operator in the f-  volume 0   K 

in k- space.   As a consequence of this definition and interpretation 

(3.67) and (3.62) may be written as 

(3.69) 

(3.70) 

From (3.70) we may construct other operators associated with certain 

C -  number f unc tions  ' V R / say 

FsJ/(k)/(IOd*k, (3.71) 

which may be interpreted to correspond to the operator which indi- 

cates the net contribution of the "particles'" J v Ry  .   For example, 

if J' "/ / kb - R • R      in our case then f" - O    because of the 

appearance of o ( % - I * I )   as factors in (3.68).   However, ii 

j (k/ •= }i0  i K I "       then r   would be positive definite and would 

be interpreted to denote the number of Quanta as contrasted to   y\ 

in (3.70) which we have Interpreted to denote the net number of 

Quanta.   In the former example   j (k)    clearly corresponded to 

the mass of the particle associated with the *r - vector K'    as in 

the usual interpretation.   If we denote by M     the operator for the 

._. 

.••".-'•- 
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i « 

! 

number of Quanta then from the above discussion 

ir»/k.ik.ryYw<)H. (3.72) 

The operator for the total mass of the particles comprising the field 

could be defined as 

M'-//£TT/(IOdH, 
/ 0 At/ «p S 

(3.73) 

or 

(3.74) 

(3.73), if taken as a definition, would in general permit the appear- 

ance of negative masses.   On the other hand the definition (3.74) would 

in general be positive because of the positive definite character of the 

integrand.   In any event for the case that we are considering both   I • 

and  **   make no contribution. 

Before we close this section let us record for future use some 

of the non-vanishing commutators involving h \ 4 , K " / . f\ \U, t r>~~ ). 

E (fc*)    ,    E   C K ^ ) ,      N   and     Q**.  From (3.12) and 

(3.34) we have 

a. 

i   1 

>:•• -si 

, yumriMtr 



s.mpiw' ^pTttw* 

- "1       j 
• —. i i • 

w 

' -v'Mriiyitw.'wiMiiftrj.imiti^isa^jftigjiiT.^^^TEB, 
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Upon using {?. 40}; (3.41) and (3.75) it can be shown that 

• =f i[l V \%fVrVM$ \ U'-k").       (3.76) 

If we integrate both sides of (3.78) with respect to (L- we obtain 

from the definition of  k\V)  and A v K) :  (3.34) 

lt^'±\A,lk"±)]-['Ar(k
,t))£s(k"i)] 

r*i[lk'>*r|rs-k,
rli;]S,(k,-l.")(€(^<),,|.        (3.77) 

In a similar way 

[|r(k' *), £5Ck"i)l=.-lKl[lkTr|fS-kVn]^4'')jr4)jy 78, 

[Ar(l,k
+),N]=   -11*i\Wt.tytrW\ (3-79) 

ft(f,k+),N]- - m* I Ik!"' t (|) Er (r);        (3-80) 

:    • 

:      .iSa*V.- 

I  ..•~*.r. ,,>;*,^,.^u. ,i„i •,; ^^j. 
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fA^'k"),Nj-^5WM-'ci|)eik^^£r(k-)r^ (3.8D 

[Er(k.*)JN]-**,Er(k*)/£^)d*of, 

[^.(k*),N]-*ir,Er(k")j£(^)A+^J 

[yw, N]«- i ir'e^^E, m&^'fji w^ 

(3.83) 

(3.84) 

(3.35) 

(3.88) 

i 

-  i 

and finally 

Ol1</].-*rjflU&lttMfc.tt-7Ut,ttE,(I^Jyk- (3-87) 

10.    Introduction oi Boson Operators. 

In this section we will continue to assume thai ail operators 

appearing, unless explicitly stated otherwise, are the transformed 

expressions S,  G^ S~ 5, N S~ , ' ' '    which we shall 

simply denote by   Of   ,     N , • • • respectively.     •>, is defined 

after (3.17).   If we denote by 6.( k) the  6 (fc)  which appears 

in (3.43) then upon defining 

••—1       I    IJ, • II 

X& i<" f ~. 

A-        ' X.. ' C \        .' 

**5 , ;»''*':5X 
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. 
] 

*  j 

•-/".     • 

w- 

•*-~..A" 

A;ik)set(k) -Ait),    i-o*»3, (3. 88) 

«.P find from (3.75) after integrating with respect to  \- and using 
v 

the definition (3.34) that 

ftlk^A^k1")]-- (*^"lk'IS,(k'-k")r]rs x 

£<t>d«r (3.89) 

which implies in view of (3.88) that 

IAI'UO.A:(V*")>Un*»-,lk,l§,(k,-l.")rjlJ k\)^} e.«j 

in view of the properties of our unit vectors o ^ R ) .   Thus the 

A; v K y    satisfy the same commutation relationships as the A r (R ) . 

Introducing (3.88) in (3.47) we obtain 

E(K*MIWlA'1(k*)ei(k
t)-ilkK'k*)fc1(k*).   <3-81> 

Consequently, (3.67), (3.60) and (3. 61) become 

if 

f 
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&stf£f[^^ (3.93) 

4*1/ 

If we now define 

/*'   (O <(3.94) 

(3. 95) 

then in order that 

-I 

.    !.... 
1   • ->...... 

-• 

1 
'•••-•• 

**j .".>•    i 
* - . _     Sfe—' " 

•...   *-•••.<: 

•'• j.'V. 

•["•' 
"'- • 1'. 

! 
*~    f. .,. 
"it 

we find from (3. 89) that the function 6 (A/ which we have intro- 

duced in the beginning section (8) must be normalized to unity: 

(3. 96) 

V'V -- 1. (3. 97) 

Whether a suitable invariant function satisfying (3. 97) exists or not 

cannot at the present stage of development be answered.   (3. 92), 

(3. 93) and (3. 94) become in terms of the Boson operators   n 
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(3. 98) 

i 

. *   - 

. 

:'^ai :,* 

(3. 98) may be replaced by a sum by introducing the formalism 

(2) of Dirac     where for a function M) 

^cwa*k« > jdos-u), (3„ C9) 

where S \[) is the number of points per unit volume in the neighbor- 

hood of any point  j<, .   If the continuous Boson operators  K]    and 

11     appearing in (3.98) are replaced by the discrete Boson operators 

f\ >     and  \"\   •   according to 

i - *l n. > 

and use is made of (3.99) we find that 

(3.100) 

••-*••• is*. 
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/ 

<i-il.i^[n^T^(irt+?L.(ii)ri.lu-)], (3.101) 

However, (2) 

\Kl>~   K^'^K (3.102) 

so that in view of (3. 96) 

[1^'^^j-V^- (3.103) 

Thus from the well known properties of the Boson operators we con- 

clude that the characteristic values of   |\)   are comprised of all positive 

or negative integers.       *o0 is positive definite while  *£   is not.   The 

characteristic values of (j0  and   \& are sums of integer multiples 

of I B \ and  K   respectively.   Since the symbols usea in this section 

are the transformed symbols involving the unitary operator   ib, defined 

after (3.17) and since the characteristic values are unaltered by unitary 

transformations the untransformed symbols (?     and  l\j    have the 

same characteristic values. 

< 
«3    <C «. 

_;v"_-_ ^      .. 

•'••-. 

• y**Z . .    •••-, -i   s. . < - 

"       •: -:;'-'•• ^?»'B: 
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IV.   INTERACTIONS 

11.   Introduction. 

In this section we will attempt to recast the generalized 

Schroedinger equation for unitary transformations to a form such as 

to yield directly and independently of the commutation relationships 

satisfied or postulated for the fields the result that tf the "field 

equations" are satisfied then  p   = const.   In the usual formulation 

of the theory a   Lagrangian function L   appears in the generalized 

Schroedinger equation as 

^f^LS(<r), (4.0) 

where SU) is a unitary operator and    ?~~7   denotes the func- 
(7)        i 

tional derivative of a functional of the space-time surface.       If  L 

in (4.0) is a "free" field Lagrangian, it is not at all apparent that 

•_>    = const, unless one undertakes to make further assumptions 

regarding the commutation relationships and/or appeals to representa- 

tions of one kind or another as in the usual arguments.v '  It is 

believed that the Lagrangian function which appears in (4.0) should 

be constructed in a manner which renders manifest the statement 

O     = const, for free fields. 

•— • i 

*    —•     , .     '   •    -T  - .        \>_.     - . ••••X-!.      .••VA..  ^CiC .   T-, Hi        .u • I'U 
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It would be possible within the framework of the classical 

theory of ^"* number fields to arrange for a modified   I— to vanish. 

For example, the Lagrangian 

L T 

could be written as 

j     >n/i'r A    i i AIL r\j 
w *r UJH*-, 

which involves a term of the form of a divergence which presumably 

makes no contribution.   The original Lagrangian  <- and the modified 

Lagrangian L    : 

Li . > A*-IT u r ^u 
Sri S> 

•   :'••-• 

f£jS 

! 
,V^.;V. 

-K 

.   i 

7,1 •- 

it- 

would yield the same field equation upon insertion into the classical 

action principle.   Moreover, it would be possible to construct a 

stress-energy momentum tensor corresponding to u    via the methods 

of general relativity^ ' /or the usual canonical formalism? upon 

replacing L   by its covariant generalization 

L' - - «/" U U, 
% 

'/UlT  ) 



'5 

P*u where W~~~ is the metric tensor and ( );MU- denotes covariant 

differentiation relative to the metric Qj&iT >   This however is of no 

import to us at the present time.   It is clear that the insertion of a 

symmetrized   <-    say 

.    .--5-»*. -     - 

56, 

rf 

• •-'•'•. • 

--•, 

I 
'••'••• 

ha 

.<<—.•, 

'I 

into (4.0; would yield the desired property  p   = const, if the field 

equations are satisfied (in our ca&e Q   U - 0 ).   It would be possible 

in this manner to obtain modified "free" field Lagrangians for all of 

the fields of current interest.   The above procedure, however, suffers 

a defect in that it is not independent of the manner in which the classical 

fields, which are promoted to be operators in Quantum Theory, are 

represented.   In order to make some progress in this direction in the 

next part of our investigation, we shall assume from the outset that the 

symbols entering our equations are operators and for simplicity we 

will take our fields to be local. 

12.   Transformation Theory. 

Let us consider the operator Lagrangian L- which is a func- 

tion of some fields f*      A *', 1/ • < , the displacement operators 

>£> Ai ~ 9 fjh^ and some other given functions of the space- 

time operators   )C     , say  Q a .   The consideration of the first 

* u 

'.-• ^gi 
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variation of the trace of I—  expressed in terms of the variation of 

J~A > ^PM   
an^ % 6   ^ea^s t0 the expression 

STrL« 

T^P^+N^+M9^), (4.1) 

which, if the variations arise from an arbitrary infinitesmal similarity 

transformation, implies the identity 

t\/i 6 "1  _ 
U * (4. 2) 

Because of (4. 2) we may write 

^^SfArt|BM 6 

which we will define to be our modified Lagrangian.   If (4.3) is con- 

structed so that X   is hermitian, then if we consider our fields to 

be local the functional equation 

(4.3) 

i*i? *t'St<r), (4.4) 

•J*. < 
•'•<• '•'•• • "-•  <• :"vs •&«•      •' ' ';'"v';"<w."'• ' "*"'-j ftS* «^ if--        • •• 
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with X    given by (4.3) defines a unitary operator   2   .   Now since 

we are assuming that 4f g is a given local function then the 

expression  L<?ft ; r I J   - O   in (4.2) so that we need not be con- 

cerned with the expressions invoiviuy  r+ a   i« (4. 3).   V»ith thic 4"'1— 

into consideration we will define 

i I 

and insert it in place of X*   which appears in (4.4). 

V^e will now show that if the field equations are satisfied 

then P v(T/ = const.    In order to show this let us first rewrite 

JL     replaced by JL (4.4) with replaced by <^.   as 

?[<s)S(<r)-£S(<r), 

where in a representation with  %  diagonal 

(4.5) 

(4.6) 

(4.7) 

\ 
i 

1&C •*.& 

V     '-•• (*.• 

<%\?(a')\t.">ti^.) ^t-x-'h^xH^U'}      (4.8) 

where )> fe'-z'J is the four dimensional Dirac function and it is to 

i 
r ;;?:N»"V; 

'.•     ,...-     g5 ->o:-v? .;* 
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be understood that \jC ' I i (<77 \~P   /    is defined in connection 

with other functionals of the surface Cf   .   Now 

' <\P/^M*\\„»\A |V  Wv'.,/",)//,lA^)|y"Vl%'" 

(4.9) 

Also 

«t'lAWP((r)ltO-i/fe1AWk")^p,^-^JV" (4.io, 

upon introducing (4.8) and using the rules of matrix multiplication. 

But 

-A J7fc) d   £ 

where  C   1^    denotes the contribution of the argument upon evalua- 

tion on (T    .   Applying this result to (4.10) we obtain 

< *MA(<r)PWIjO«-iJ^<*MAMI**>,      (4.1D 

.,»-•   . •> 

;     -     • '•<••'" ' 

-.-' - 
•.,. -•-•• V 
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owing to the circumstance that the evaluations of I    J_/ for this case 

vanish.   (4. 9) and (4.11) are such as to indicate that i \0) is an 

hermitian operator.   For upon introducing n (,(77- | we discover that 

U,\p(<r)\x.'>.<zm\P(r)\*> * 
(4.12) 

upon recalling that 

<£'i*">*a"i*'> - s(i'-t') (4.13) 

If we now take the matrix elements of (4.7) in a representation 

with 7L, - diagonal we obtain from (4.8) and recalling 

(t!\jpfX\ t>- -ij%h b {*,'-%") j (4.H) 

it 
C-t-   >,1 

•''""• "   :   . .'.        "I    '   «••   .£TO     A." 

«£—       •   •' -. •••-:• ^'   ..   x. -;•• 

'••"' ".:•'••'.• •'•;.. •"•  -   " ^'-V «"£*"_ (."'^S. •        •••/'•", 
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since j^ AU) *i7^( Afc)d ^ (jfi)   .  Now If   N^ 

and .3 (o w/ are presumed diagonal in a representation with 

X-" diagonal 

(4. IS) 

<i'\n(<r)S(<rW)) l^">/> 

where    f\| (<r)   5  /   NA W d ^ . 
Hence, 

•^(I'INWSWII'), 

Therefore, 

(*) This replacement is possible only in case p yf) = const. 

However, we shall define symbolically   /    \\     C> 0 (f^, - Fv p . 

-;T; .-- ••"v..; - m^MS?1 .-..• 
'•...• 
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' 

»•.-. -r- 

I 

•^<*'iS(r;i*»> = 

<f I f. F* S(<r) I £"> - iJufc' IHM S(ar) \r \ 

so that if FA = o 

[m {<£' I(' + N(4 $ (<r) I *'>} = o.    (4.16) 

Remembering that if    (       = 0 ,    I • (0/ is independent of   Q 

(4.16) possesses a solution of the form   •> ~ \ ^Nj of which 

a simple unitary form can be exhibited in the form 

s. - e cK/y 

? (4.17) 

where °*   is a real C - number. 

In general we would have in the case where both j/\    and 

I are diagonal in the  /C- representation 

•JL 5{<t! I (< +M Wj S(W )*'>}«*, WF W ISW(*> is) 

whether the field equations are satisfied or not. 

(4.18) can also be written as 

/ 
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-_•• 

> 

<>s' I ^ FA5,fWlx">^ (4.19) 

- 

• 

I. 

• 1 
„.-     ;••-•*• 

•     \ 

,{•• 

• 

:•-< :h;-: 

^-,f    '*••• • 

^'^i'     '    •J"t' 

which would imply that 

ijkih+Nk)] S UV WA FA S M.        (4.20, 

An integral equation corresponding to (4. 20) which incorporates 

the "initial" condition ,J W- 1    on tf"c    is* 

S W *[i tti (o')Y ['+N fc )J -i[i tN (r)]" A P WdV (4.2D 
46 

It is apparent that (4.20) and (4.21) differ from the usual 

functional equation for the operator   b ^    /   since it involves 

the expression  N 1<T/   defined by (4.15) which from some earlier 

*It is to be noted that I l + N if )J   is symbolic and is defined by 

UM» 0+ M W)] "' F (<r)      where U^jsatisfies 

uwtj rwufo^]d£M* fir). 
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(2) 
work     we hav« defined to be the operator for the net number of 

Quanta.   If we proceed to solve (4, 21) it seems to indicate that the 

matrix elements of   S    in the first approximation would involve the 

reciprocal of the net number of Quanta plus unity so that as the net 

number of Quanta involved increases the probability for transitions 

from one state to another would decrease in a manner involving the 

square of   IN (Jj -+ |    .   Qualitatively this finding implies $((f)-^l 

as the net number of Quanta increases.   Consequently, if our obser- 

vations are valid, the probability of transitions from one state to 

another for assemblages which involve large net numbers of Quanta 

is small. *  This may be another approach to the concept of statistical 

equilibrium, an approach which stems directly from the introduction 

of the operator   jN| (Q j   which appears naturally from our manner 

for obtaining operator identities %valid in any representation.   The 

demand, however, that our field equations be obtained in a manner 

independent of the representation has as a consequence altered the 

usual form ioj the generalized Schroedinger equation through the 

appearance of   N \<f )   in (4. 21). 

>•    v.   i 
* Assuming that the matrix elements of the interaction do not involve 

powers of N   higher than unity. 
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